Production of multivalent protein binders using a self-trimerizing collagen-like peptide scaffold.
نویسندگان
چکیده
A class of multivalent protein binders was designed to overcome the limitations of low-affinity therapeutic antibodies. These binders, termed "collabodies," use a triplex-forming collagen-like peptide to drive the trimerization of a heterologous target-binding domain. Different forms of collabody, consisting of the human single-chain variable fragment (scFv) fused to either the N or C terminus of the collagen-like peptide scaffold (Gly-Pro-Pro)(10), were stably expressed as soluble secretory proteins in mammalian cells. The collabody consisting of scFv fused to the N terminus of collagen scaffold is present as a homotrimer, whereas it exhibited a mixture of trimer and interchain disulfide-bonded hexamer when cysteine residues were introduced and flanked the scaffold. The collagenous motif in collabody is prolyl-hydroxylated, with remarkable thermal and serum stabilities. The collabody erb_scFv-Col bound to the extracellular domain of epidermal growth factor receptor with a binding strength approximately 20- and 1000-fold stronger than the bivalent and monovalent counterparts, respectively. The trimeric collagen scaffold does not compromise the functionality of the binding moieties of parental immunoglobulin G (IgG); therefore, it could be applied to fuse other protein molecules to acquire significantly improved targeting-binding strengths.
منابع مشابه
Response to: "Comment on 'Production of multivalent protein binders using a self-trimerization collagen-like peptide scaffold'".
متن کامل
Generation and characterization of monospecific and bispecific hexavalent trimerbodies
Here, we describe a new class of multivalent and multispecific antibody-based reagents for therapy. The molecules, termed "trimerbodies," use a modified version of the N-terminal trimerization region of human collagen XVIII noncollagenous 1 domain flanked by two flexible linkers as trimerizing scaffold. By fusing single-chain variable fragments (scFv) with the same or different specificity to b...
متن کاملP 99: Self-Assembling Peptide Scaffolds as New Therapeutic Method in TBI: Focused on Bioactive Motifs
Traumatic brain injury (TBI) is a common reason of brain tissue loss as a result of tumors, accidents, and surgeries. Renewal of the brain parenchyma is restricted by many reasons such as inimical substances produced as the result of trauma and also inflammatory responses. A strong cascade of inflammatory responses begins as a result of TBI which include recalling peripheral leukocytes into the...
متن کاملSignificant Type I and Type III Collagen Production from Human Periodontal Ligament Fibroblasts in 3D Peptide Scaffolds without Extra Growth Factors
We here report the development of two peptide scaffolds designed for periodontal ligament fibroblasts. The scaffolds consist of one of the pure self-assembling peptide scaffolds RADA16 through direct coupling to short biologically active motifs. The motifs are 2-unit RGD binding sequence PRG (PRGDSGYRGDS) and laminin cell adhesion motif PDS (PDSGR). RGD and laminin have been previously shown to...
متن کاملSelf-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair.
Emerging medical technologies for effective and lasting repair of articular cartilage include delivery of cells or cell-seeded scaffolds to a defect site to initiate de novo tissue regeneration. Biocompatible scaffolds assist in providing a template for cell distribution and extracellular matrix (ECM) accumulation in a three-dimensional geometry. A major challenge in choosing an appropriate sca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- FASEB journal : official publication of the Federation of American Societies for Experimental Biology
دوره 22 11 شماره
صفحات -
تاریخ انتشار 2008